Function calling (also known as tool calling) allows LLMs to request information from external services and APIs during conversations. This extends your voice AI bot’s capabilities beyond its training data to access real-time information and perform actions.

Pipeline Integration

Function calling works seamlessly within your existing pipeline structure. The LLM service handles function calls automatically when they’re needed:
pipeline = Pipeline([
    transport.input(),
    stt,
    context_aggregator.user(),     # Collects user transcriptions
    llm,                          # Processes context, calls functions when needed
    tts,
    transport.output(),
    context_aggregator.assistant(), # Collects function results and responses
])
Function call flow:
  1. User asks a question requiring external data
  2. LLM recognizes the need and calls appropriate function
  3. Your function handler executes and returns results
  4. LLM incorporates results into its response
  5. Response flows to TTS and user as normal
Context integration: Function calls and their results are automatically stored in conversation context by the context aggregators, maintaining complete conversation history.

Understanding Function Calling

Function calling allows your bot to access real-time data and perform actions that aren’t part of its training data. For example, you could give your bot the ability to:
  • Check current weather conditions
  • Look up stock prices
  • Query a database
  • Control smart home devices
  • Schedule appointments
Here’s how it works:
  1. You define functions the LLM can use and register them to the LLM service used in your pipeline
  2. When needed, the LLM requests a function call
  3. Your application executes any corresponding functions
  4. The result is sent back to the LLM
  5. The LLM uses this information in its response

Implementation

1. Define Functions

Pipecat provides a standardized FunctionSchema that works across all supported LLM providers. This makes it easy to define functions once and use them with any provider. As a shorthand, you could also bypass specifying a function configuration at all and instead use “direct” functions. Under the hood, these are converted to FunctionSchemas.
from pipecat.adapters.schemas.function_schema import FunctionSchema
from pipecat.adapters.schemas.tools_schema import ToolsSchema

# Define a function using the standard schema
weather_function = FunctionSchema(
    name="get_current_weather",
    description="Get the current weather in a location",
    properties={
        "location": {
            "type": "string",
            "description": "The city and state, e.g. San Francisco, CA",
        },
        "format": {
            "type": "string",
            "enum": ["celsius", "fahrenheit"],
            "description": "The temperature unit to use.",
        },
    },
    required=["location", "format"]
)

# Create a tools schema with your functions
tools = ToolsSchema(standard_tools=[weather_function])

# Pass this to your LLM context
context = OpenAILLMContext(
    messages=[{"role": "system", "content": "You are a helpful assistant."}],
    tools=tools
)
The ToolsSchema will be automatically converted to the correct format for your LLM provider through adapters.

Using Direct Functions (Shorthand)

You can bypass specifying a function configuration (as a FunctionSchema or in a provider-specific format) and instead pass the function directly to your ToolsSchema. Pipecat will auto-configure the function, gathering relevant metadata from its signature and docstring. Metadata includes:
  • name
  • description
  • properties (including individual property descriptions)
  • list of required properties
Note that the function signature is a bit different when using direct functions. The first parameter is FunctionCallParams, followed by any others necessary for the function.
from pipecat.adapters.schemas.tools_schema import ToolsSchema
from pipecat.services.llm_service import FunctionCallParams

# Define a direct function
async def get_current_weather(params: FunctionCallParams, location: str, format: str):
    """Get the current weather.

    Args:
        location: The city and state, e.g. "San Francisco, CA".
        format: The temperature unit to use. Must be either "celsius" or "fahrenheit".
    """
    weather_data = {"conditions": "sunny", "temperature": "75"}
    await params.result_callback(weather_data)

# Create a tools schema, passing your function directly to it
tools = ToolsSchema(standard_tools=[get_current_weather])

# Pass this to your LLM context
context = OpenAILLMContext(
    messages=[{"role": "system", "content": "You are a helpful assistant."}],
    tools=tools
)

Using Provider-Specific Formats (Alternative)

You can also define functions in the provider-specific format if needed:
from openai.types.chat import ChatCompletionToolParam

# OpenAI native format
tools = [
    ChatCompletionToolParam(
        type="function",
        function={
            "name": "get_current_weather",
            "description": "Get the current weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "format": {
                        "type": "string",
                        "enum": ["celsius", "fahrenheit"],
                        "description": "The temperature unit to use.",
                    },
                },
                "required": ["location", "format"],
            },
        },
    )
]

Provider-Specific Custom Tools

Some providers support unique tools that don’t fit the standard function schema. For these cases, you can add custom tools:
from pipecat.adapters.schemas.tools_schema import AdapterType, ToolsSchema

# Standard functions
weather_function = FunctionSchema(
    name="get_current_weather",
    description="Get the current weather",
    properties={"location": {"type": "string"}},
    required=["location"]
)

# Custom Gemini search tool
gemini_search_tool = {
    "web_search": {
        "description": "Search the web for information"
    }
}

# Create a tools schema with both standard and custom tools
tools = ToolsSchema(
    standard_tools=[weather_function],
    custom_tools={
        AdapterType.GEMINI: [gemini_search_tool]
    }
)
See the provider-specific documentation for details on custom tools and their formats.

2. Register Function Handlers

Register handlers for your functions using one of these LLM service methods:
  • register_function
  • register_direct_function
Which one you use depends on whether your function is a “direct” function.
from pipecat.services.llm_service import FunctionCallParams

llm = OpenAILLMService(api_key="your-api-key")

# Main function handler - called to execute the function
async def fetch_weather_from_api(params: FunctionCallParams):
    # Fetch weather data from your API
    weather_data = {"conditions": "sunny", "temperature": "75"}
    await params.result_callback(weather_data)

# Register the function
llm.register_function(
    "get_current_weather",
    fetch_weather_from_api,
    cancel_on_interruption=True,  # Cancel if user interrupts (default: True)
)
Key registration options:
  • cancel_on_interruption=True (default): Function call is cancelled if user interrupts
  • cancel_on_interruption=False: Function call continues even if user interrupts
Use cancel_on_interruption=False for critical operations that should complete even if the user starts speaking. Function calls are async, so you can continue the conversation while the function executes. Once the result returns, the LLM will automatically incorporate it into the conversation context. LLMs vary in terms of how well they incorporate changes to previous messages, so you may need to experiment with your LLM provider to see how it handles this.

3. Create the Pipeline

Include your LLM service in your pipeline with the registered functions:
# Initialize the LLM context with your function schemas
context = OpenAILLMContext(
    messages=[{"role": "system", "content": "You are a helpful assistant."}],
    tools=tools
)

# Create the context aggregator to collect the user and assistant context
context_aggregator = llm.create_context_aggregator(context)

# Create the pipeline
pipeline = Pipeline([
    transport.input(),               # Input from the transport
    stt,                             # STT processing
    context_aggregator.user(),       # User context aggregation
    llm,                             # LLM processing
    tts,                             # TTS processing
    transport.output(),              # Output to the transport
    context_aggregator.assistant(),  # Assistant context aggregation
])

Function Handler Details

FunctionCallParams

Every function handler receives a FunctionCallParams object containing all the information needed for execution:
@dataclass
class FunctionCallParams:
    function_name: str                          # Name of the called function
    tool_call_id: str                           # Unique identifier for this call
    arguments: Mapping[str, Any]                # Arguments from the LLM
    llm: LLMService                             # Reference to the LLM service
    context: OpenAILLMContext                   # Current conversation context
    result_callback: FunctionCallResultCallback # Return results here
Using the parameters:
async def example_function_handler(params: FunctionCallParams):
    # Access function details
    print(f"Called function: {params.function_name}")
    print(f"Call ID: {params.tool_call_id}")

    # Extract arguments
    location = params.arguments.get("location")

    # Access LLM context for conversation history
    messages = params.context.get_messages()

    # Use LLM service for additional operations
    await params.llm.say("Looking up weather data...")

    # Return results
    await params.result_callback({"temperature": "75°F"})
See the API reference for complete details.

Handler Structure

Your function handler should:
  1. Receive necessary arguments, either:
    • From params.arguments
    • Directly from function arguments, if using direct functions
  2. Process data or call external services
  3. Return results via params.result_callback(result)
async def fetch_weather_from_api(params: FunctionCallParams):
    try:
        # Extract arguments
        location = params.arguments.get("location")
        format_type = params.arguments.get("format", "celsius")

        # Call external API
        api_result = await weather_api.get_weather(location, format_type)

        # Return formatted result
        await params.result_callback({
            "location": location,
            "temperature": api_result["temp"],
            "conditions": api_result["conditions"],
            "unit": format_type
        })
    except Exception as e:
        # Handle errors
        await params.result_callback({
            "error": f"Failed to get weather: {str(e)}"
        })

Controlling Function Call Behavior (Advanced)

When returning results from a function handler, you can control how the LLM processes those results using a FunctionCallResultProperties object passed to the result callback.

Properties

FunctionCallResultProperties provides fine-grained control over LLM execution:
@dataclass
class FunctionCallResultProperties:
    run_llm: Optional[bool] = None                 # Whether to run LLM after this result
    on_context_updated: Optional[Callable] = None  # Callback when context is updated
Property options:
  • run_llm=True: Run LLM after function call (default behavior)
  • run_llm=False: Don’t run LLM after function call (useful for chained calls)
  • on_context_updated: Async callback executed after the function result is added to context
Skip LLM execution (run_llm=False) when you have back-to-back function calls. If you skip a completion, you must manually trigger one from the context aggregator.
See the API reference for complete details.

Example Usage

from pipecat.frames.frames import FunctionCallResultProperties
from pipecat.services.llm_service import FunctionCallParams

async def fetch_weather_from_api(params: FunctionCallParams):
    # Fetch weather data
    weather_data = {"conditions": "sunny", "temperature": "75"}

    # Don't run LLM after this function call
    properties = FunctionCallResultProperties(run_llm=False)

    await params.result_callback(weather_data, properties=properties)

async def query_database(params: FunctionCallParams):
    # Query database
    results = await db.query(params.arguments["query"])

    async def on_update():
        await notify_system("Database query complete")

    # Run LLM after function call and notify when context is updated
    properties = FunctionCallResultProperties(
        run_llm=True,
        on_context_updated=on_update
    )

    await params.result_callback(results, properties=properties)

Key Takeaways

  • Function calling extends LLM capabilities beyond training data to real-time information
  • Context integration is automatic - function calls and results are stored in conversation history
  • Multiple definition approaches - use standard schema for portability, direct functions for simplicity
  • Pipeline integration is seamless - functions work within your existing voice AI architecture
  • Advanced control available - fine-tune LLM execution and monitor function call lifecycle

What’s Next

Now that you understand function calling, let’s explore how to configure text-to-speech services to convert your LLM’s responses (including function call results) into natural-sounding speech.

Text to Speech

Learn how to configure speech synthesis in your voice AI pipeline