Overview

Pipecat’s server-side functionality is organized into three main categories:

Service Categories

Pipecat integrates with various AI services across different categories:

Transport

WebRTC and WebSocket implementations for real-time communication

Speech Processing

Speech-to-text, text-to-speech, and speech-to-speech services

Language Models

Integration with various LLM providers

Vision & Media

Image generation, video processing, and computer vision

Getting Started

  1. Browse our Supported Services to see available integrations
  2. Install required dependencies for your chosen services
  3. Reference individual service docs for detailed configuration options

Example Usage

from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.services.cartesia import CartesiaTTSService
from pipecat.services.deepgram import DeepgramSTTService
from pipecat.services.openai import OpenAILLMService
from pipecat.transports.services.daily import DailyParams, DailyTransport

transport = DailyTransport(
    room_url,
    token,
    "Respond bot",
    DailyParams(
        audio_out_enabled=True,
        vad_enabled=True,
        vad_analyzer=SileroVADAnalyzer(),
        vad_audio_passthrough=True,
    ),
)

# Configure services
stt = DeepgramSTTService(api_key=KEY)
llm = OpenAILLMService(model=MODEL)
tts = CartesiaTTSService(voice_id=ID)

# Create pipeline
pipeline = Pipeline([
    transport.input(),
    stt,
    llm,
    tts,
    transport.output()
])