Overview

FalImageGenService provides high-speed image generation capabilities using fal’s optimized Stable Diffusion XL models. It supports various image sizes, formats, and generation parameters with a focus on fast inference.

Installation

To use FalImageGenService, install the required dependencies:

pip install pipecat-ai[fal]

You’ll also need to set up your Fal API key as an environment variable: FAL_KEY

You can obtain a fal API key by signing up at fal.

Configuration

Constructor Parameters

params
InputParams
required

Generation parameters configuration

aiohttp_session
aiohttp.ClientSession
required

HTTP session for image downloading

model
str
default:
"fal-ai/fast-sdxl"

Model identifier

key
str

Fal API key (alternative to environment variable)

Input Parameters

class InputParams(BaseModel):
    seed: Optional[int] = None              # Random seed for reproducibility
    num_inference_steps: int = 8            # Number of denoising steps
    num_images: int = 1                     # Number of images to generate
    image_size: Union[str, Dict[str, int]] = "square_hd"  # Image dimensions
    expand_prompt: bool = False             # Enhance prompt automatically
    enable_safety_checker: bool = True      # Filter unsafe content
    format: str = "png"                     # Output image format

Supported Image Sizes

Possible enum values: square_hd, square, portrait_4_3, portrait_16_9, landscape_4_3, landscape_16_9

Note: For custom image sizes, you can pass the width and height as an object:

{
  "image_size": {
    "width": 1280,
    "height": 720
  }
}

See the fal docs for more information.

Output Frames

URLImageRawFrame

url
string

Generated image URL

image
bytes

Raw image data

size
tuple

Image dimensions (width, height)

format
string

Image format (e.g., ‘PNG’)

ErrorFrame

error
string

Error information if generation fails

Methods

See the Image Generation base class methods for additional functionality.

Usage Example

import aiohttp
from pipecat.services.fal import FalImageGenService

# Configure service
async with aiohttp.ClientSession() as session:
    service = FalImageGenService(
        model="fal-ai/fast-sdxl",
        aiohttp_session=session,
        params=FalImageGenService.InputParams(
            num_inference_steps=8,
            image_size="portrait_hd",
            expand_prompt=True
        )
    )

    # Use in pipeline
    pipeline = Pipeline([
        prompt_input,     # Produces text prompts
        service,          # Generates images
        image_handler     # Handles generated images
    ])

Frame Flow

Metrics Support

The service collects processing metrics:

  • Generation time
  • Download time
  • API response time
  • Total processing duration

Notes

  • Fast inference times with optimized models
  • Supports various image sizes and formats
  • Automatic prompt enhancement option
  • Built-in safety filtering
  • Asynchronous operation
  • Efficient HTTP session management
  • Comprehensive error handling