Overview

TogetherLLMService provides access to Together AI’s language models, including Meta’s Llama 3.1 and 3.2 models, through an OpenAI-compatible interface. It inherits from OpenAILLMService and supports streaming responses, function calling, and context management.

Installation

To use TogetherLLMService, install the required dependencies:

pip install "pipecat-ai[together]"

You’ll also need to set up your Together AI API key as an environment variable: TOGETHER_API_KEY.

Get your API key from Together AI Console.

Frames

Input

  • OpenAILLMContextFrame - Conversation context and history
  • LLMMessagesFrame - Direct message list
  • VisionImageRawFrame - Images for vision processing (select models)
  • LLMUpdateSettingsFrame - Runtime parameter updates

Output

  • LLMFullResponseStartFrame / LLMFullResponseEndFrame - Response boundaries
  • LLMTextFrame - Streamed completion chunks
  • FunctionCallInProgressFrame / FunctionCallResultFrame - Function call lifecycle
  • ErrorFrame - API or processing errors

Function Calling

Function Calling Guide

Learn how to implement function calling with standardized schemas, register handlers, manage context properly, and control execution flow in your conversational AI applications.

Context Management

Context Management Guide

Learn how to manage conversation context, handle message history, and integrate context aggregators for consistent conversational experiences.

Usage Example

import os
from pipecat.services.together.llm import TogetherLLMService
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.adapters.schemas.function_schema import FunctionSchema
from pipecat.adapters.schemas.tools_schema import ToolsSchema

# Configure Together AI service
llm = TogetherLLMService(
    api_key=os.getenv("TOGETHER_API_KEY"),
    model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",  # Balanced performance
    params=TogetherLLMService.InputParams(
        temperature=0.7,
        max_tokens=1000
    )
)

# Define function for tool calling
weather_function = FunctionSchema(
    name="get_current_weather",
    description="Get current weather information",
    properties={
        "location": {
            "type": "string",
            "description": "City and state, e.g. San Francisco, CA"
        },
        "format": {
            "type": "string",
            "enum": ["celsius", "fahrenheit"],
            "description": "Temperature unit to use"
        }
    },
    required=["location", "format"]
)

tools = ToolsSchema(standard_tools=[weather_function])

# Create context optimized for voice
context = OpenAILLMContext(
    messages=[
        {
            "role": "system",
            "content": """You are a helpful assistant in a voice conversation.
            Keep responses concise and avoid special characters for better speech synthesis."""
        }
    ],
    tools=tools
)

# Create context aggregators
context_aggregator = llm.create_context_aggregator(context)

# Register function handler with feedback
async def fetch_weather(params):
    location = params.arguments["location"]
    await params.result_callback({"conditions": "sunny", "temperature": "75°F"})

llm.register_function("get_current_weather", fetch_weather)

# Optional: Add function call feedback
@llm.event_handler("on_function_calls_started")
async def on_function_calls_started(service, function_calls):
    await tts.queue_frame(TTSSpeakFrame("Let me check on that."))

# Use in pipeline
pipeline = Pipeline([
    transport.input(),
    stt,
    context_aggregator.user(),
    llm,
    tts,
    transport.output(),
    context_aggregator.assistant()
])

Metrics

Inherits all OpenAI metrics capabilities:

  • Time to First Byte (TTFB) - Response latency measurement
  • Processing Duration - Total request processing time
  • Token Usage - Prompt tokens, completion tokens, and totals

Enable with:

task = PipelineTask(
    pipeline,
    params=PipelineParams(
        enable_metrics=True,
        enable_usage_metrics=True
    )
)

Additional Notes

  • OpenAI Compatibility: Full compatibility with OpenAI API features and parameters
  • Open Source Models: Access to cutting-edge open-source models like Llama
  • Vision Support: Select models support multimodal image and text understanding
  • Competitive Pricing: Cost-effective alternative to proprietary model APIs
  • Flexible Scaling: Choose model size based on performance vs cost requirements

Overview

TogetherLLMService provides access to Together AI’s language models, including Meta’s Llama 3.1 and 3.2 models, through an OpenAI-compatible interface. It inherits from OpenAILLMService and supports streaming responses, function calling, and context management.

Installation

To use TogetherLLMService, install the required dependencies:

pip install "pipecat-ai[together]"

You’ll also need to set up your Together AI API key as an environment variable: TOGETHER_API_KEY.

Get your API key from Together AI Console.

Frames

Input

  • OpenAILLMContextFrame - Conversation context and history
  • LLMMessagesFrame - Direct message list
  • VisionImageRawFrame - Images for vision processing (select models)
  • LLMUpdateSettingsFrame - Runtime parameter updates

Output

  • LLMFullResponseStartFrame / LLMFullResponseEndFrame - Response boundaries
  • LLMTextFrame - Streamed completion chunks
  • FunctionCallInProgressFrame / FunctionCallResultFrame - Function call lifecycle
  • ErrorFrame - API or processing errors

Function Calling

Function Calling Guide

Learn how to implement function calling with standardized schemas, register handlers, manage context properly, and control execution flow in your conversational AI applications.

Context Management

Context Management Guide

Learn how to manage conversation context, handle message history, and integrate context aggregators for consistent conversational experiences.

Usage Example

import os
from pipecat.services.together.llm import TogetherLLMService
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.adapters.schemas.function_schema import FunctionSchema
from pipecat.adapters.schemas.tools_schema import ToolsSchema

# Configure Together AI service
llm = TogetherLLMService(
    api_key=os.getenv("TOGETHER_API_KEY"),
    model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",  # Balanced performance
    params=TogetherLLMService.InputParams(
        temperature=0.7,
        max_tokens=1000
    )
)

# Define function for tool calling
weather_function = FunctionSchema(
    name="get_current_weather",
    description="Get current weather information",
    properties={
        "location": {
            "type": "string",
            "description": "City and state, e.g. San Francisco, CA"
        },
        "format": {
            "type": "string",
            "enum": ["celsius", "fahrenheit"],
            "description": "Temperature unit to use"
        }
    },
    required=["location", "format"]
)

tools = ToolsSchema(standard_tools=[weather_function])

# Create context optimized for voice
context = OpenAILLMContext(
    messages=[
        {
            "role": "system",
            "content": """You are a helpful assistant in a voice conversation.
            Keep responses concise and avoid special characters for better speech synthesis."""
        }
    ],
    tools=tools
)

# Create context aggregators
context_aggregator = llm.create_context_aggregator(context)

# Register function handler with feedback
async def fetch_weather(params):
    location = params.arguments["location"]
    await params.result_callback({"conditions": "sunny", "temperature": "75°F"})

llm.register_function("get_current_weather", fetch_weather)

# Optional: Add function call feedback
@llm.event_handler("on_function_calls_started")
async def on_function_calls_started(service, function_calls):
    await tts.queue_frame(TTSSpeakFrame("Let me check on that."))

# Use in pipeline
pipeline = Pipeline([
    transport.input(),
    stt,
    context_aggregator.user(),
    llm,
    tts,
    transport.output(),
    context_aggregator.assistant()
])

Metrics

Inherits all OpenAI metrics capabilities:

  • Time to First Byte (TTFB) - Response latency measurement
  • Processing Duration - Total request processing time
  • Token Usage - Prompt tokens, completion tokens, and totals

Enable with:

task = PipelineTask(
    pipeline,
    params=PipelineParams(
        enable_metrics=True,
        enable_usage_metrics=True
    )
)

Additional Notes

  • OpenAI Compatibility: Full compatibility with OpenAI API features and parameters
  • Open Source Models: Access to cutting-edge open-source models like Llama
  • Vision Support: Select models support multimodal image and text understanding
  • Competitive Pricing: Cost-effective alternative to proprietary model APIs
  • Flexible Scaling: Choose model size based on performance vs cost requirements