Overview

OLLamaLLMService provides access to locally-run Ollama models through an OpenAI-compatible interface. It inherits from BaseOpenAILLMService and allows you to run various open-source models locally while maintaining compatibility with OpenAI’s API format.

Installation

To use OLLamaLLMService, you need:

  1. Install Ollama on your system (Ollama installation guide)
  2. Install Pipecat dependencies:
pip install pipecat-ai[ollama]

Configuration

Constructor Parameters

model
str
default:
"llama2"

Ollama model identifier

base_url
str
default:
"http://localhost:11434/v1"

Local Ollama API endpoint

Input Parameters

Inherits all input parameters from BaseOpenAILLMService:

extra
Optional[Dict[str, Any]]

Additional parameters to pass to the model

frequency_penalty
Optional[float]

Reduces likelihood of repeating tokens based on their frequency. Range: [-2.0, 2.0]

max_completion_tokens
Optional[int]

Maximum number of tokens in the completion. Must be greater than or equal to 1

max_tokens
Optional[int]

Maximum number of tokens to generate. Must be greater than or equal to 1

presence_penalty
Optional[float]

Reduces likelihood of repeating any tokens that have appeared. Range: [-2.0, 2.0]

seed
Optional[int]

Random seed for deterministic generation. Must be greater than or equal to 0

temperature
Optional[float]

Controls randomness in the output. Range: [0.0, 2.0]

top_p
Optional[float]

Controls diversity via nucleus sampling. Range: [0.0, 1.0]

Input Frames

OpenAILLMContextFrame
Frame

Contains OpenAI-specific conversation context

LLMMessagesFrame
Frame

Contains conversation messages

VisionImageRawFrame
Frame

Contains image for vision model processing

LLMUpdateSettingsFrame
Frame

Updates model settings

Output Frames

TextFrame
Frame

Contains generated text chunks

FunctionCallInProgressFrame
Frame

Indicates start of function call

FunctionCallResultFrame
Frame

Contains function call results

Context Management

The Ollama service uses specialized context management to handle conversations and message formatting. It relies on the OpenAI base class for context management, which includes managing the conversation history, system prompts, tool calls, and converting between OpenAI and Ollama message formats.

OpenAILLMContext

The base context manager for OpenAI conversations:

context = OpenAILLMContext(
    messages=[],  # Conversation history
    tools=[],     # Available function calling tools
    system="You are a helpful assistant"  # System prompt
)

Context Aggregators

Context aggregators handle message format conversion and management. The service provides a method to create paired aggregators:

create_context_aggregator
static method

Creates user and assistant aggregators for handling message formatting.

@staticmethod
def create_context_aggregator(
    context: OpenAILLMContext,
    *,
    assistant_expect_stripped_words: bool = True
) -> OpenAIContextAggregatorPair

Parameters

context
OpenAILLMContext
required

The context object containing conversation history and settings

assistant_expect_stripped_words
bool
default:
"True"

Controls text preprocessing for assistant responses

Usage Example


# 1. Create the context
context = OpenAILLMContext(
    messages=[],
    system="You are a helpful assistant"
)

# 2. Create aggregators for message handling
aggregators = OpenAILLMService.create_context_aggregator(context)

# 3. Access individual aggregators
user_aggregator = aggregators.user()      # Handles user message formatting
assistant_aggregator = aggregators.assistant()  # Handles assistant responses

# 4. Use in a pipeline
pipeline = Pipeline([
    user_aggregator,
    llm_service,
    assistant_aggregator
])

The context management system ensures proper message formatting and history tracking throughout the conversation.

Methods

See the LLM base class methods for additional functionality.

Usage Example

from pipecat.services.ollama import OLLamaLLMService
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext

# Configure service
service = OLLamaLLMService(
    model="llama2",
    params=OLLamaLLMService.InputParams(
        temperature=0.7,
        max_tokens=1000
    )
)

# Create context
context = OpenAILLMContext(
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Explain quantum computing"}
    ]
)

# Use in pipeline
pipeline = Pipeline([
    context_manager,  # Manages conversation context
    service,          # Processes LLM requests
    text_handler      # Handles responses
])

Available Models

Ollama supports various open-source models. Here are some popular options:

Model NameDescription
llama2Meta’s Llama 2 base model
codellamaSpecialized for code generation
mistralMistral AI’s base model
mixtralMistral’s mixture of experts model
neural-chatIntel’s neural chat model
phiMicrosoft’s phi model series
vicunaBerkeley’s vicuna model

See Ollama’s documentation for a full list of available models.

To use a specific model:

service = OLLamaLLMService(model="mistral")

Frame Flow

Inherits the BaseOpenAI LLM Service frame flow:

Metrics Support

The service collects standard metrics:

  • Token usage (prompt and completion)
  • Processing duration
  • Time to First Byte (TTFB)
  • Function call metrics

Key Features

  1. Local Execution

    • No internet connection required after model download
    • Complete data privacy
    • Lower latency for many use cases
  2. Model Management

    • Easy model switching
    • Local model customization
    • Version control through Ollama
  3. Resource Control

    • CPU/GPU utilization management
    • Memory usage control
    • Concurrent request handling

Common Use Cases

  1. Development and Testing

    • Rapid prototyping
    • Offline development
    • Cost-effective testing
  2. Privacy-Sensitive Applications

    • Healthcare applications
    • Financial services
    • Personal data processing
  3. Edge Computing

    • IoT applications
    • Embedded systems
    • Low-latency requirements

Notes

  • Runs models locally through Ollama
  • OpenAI-compatible interface
  • Supports streaming responses
  • Handles function calling
  • Manages conversation context
  • Includes token usage tracking
  • Thread-safe processing