Overview

OpenAIRealtimeBetaLLMService provides real-time, multimodal conversation capabilities using OpenAI’s Realtime Beta API. It supports speech-to-speech interactions with integrated LLM processing, function calling, and advanced conversation management.

Installation

To use OpenAIRealtimeBetaLLMService, install the required dependencies:

pip install pipecat-ai[openai]

You’ll also need to set up your OpenAI API key as an environment variable: OPENAI_API_KEY.

Configuration

Constructor Parameters

api_key
str
required

Your OpenAI API key

base_url
str

WebSocket endpoint URL

session_properties
SessionProperties

Configuration for the realtime session

start_audio_paused
bool
default: "False"

Whether to start with audio input paused

send_transcription_frames
bool
default: "True"

Whether to emit transcription frames

Session Properties

class SessionProperties(BaseModel):
    modalities: Optional[List[Literal["text", "audio"]]]
    instructions: Optional[str]
    voice: Optional[str]
    input_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]]
    output_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]]
    input_audio_transcription: Optional[InputAudioTranscription]
    turn_detection: Optional[Union[TurnDetection, bool]]
    tools: Optional[List[Dict]]
    tool_choice: Optional[Literal["auto", "none", "required"]]
    temperature: Optional[float]
    max_response_output_tokens: Optional[Union[int, Literal["inf"]]]

Input Frames

Audio Input

InputAudioRawFrame
Frame

Raw audio data for speech input

Control Input

StartInterruptionFrame
Frame

Signals start of user interruption

UserStartedSpeakingFrame
Frame

Signals user started speaking

UserStoppedSpeakingFrame
Frame

Signals user stopped speaking

Context Input

OpenAILLMContextFrame
Frame

Contains conversation context

LLMMessagesAppendFrame
Frame

Appends messages to conversation

Output Frames

Audio Output

TTSAudioRawFrame
Frame

Generated speech audio

Control Output

TTSStartedFrame
Frame

Signals start of speech synthesis

TTSStoppedFrame
Frame

Signals end of speech synthesis

Text Output

TextFrame
Frame

Generated text responses

TranscriptionFrame
Frame

Speech transcriptions

Usage Example

from pipecat.services.openai import OpenAIRealtimeBetaLLMService
from pipecat.services.openai.events import SessionProperties, TurnDetection

# Configure service
service = OpenAIRealtimeBetaLLMService(
    api_key="your-api-key",
    session_properties=SessionProperties(
        modalities=["audio", "text"],
        voice="alloy",
        turn_detection=TurnDetection(
            threshold=0.5,
            silence_duration_ms=800
        ),
        temperature=0.7
    )
)

# Use in pipeline
pipeline = Pipeline([
    audio_input,       # Produces InputAudioRawFrame
    service,           # Processes speech/generates responses
    audio_output       # Handles TTSAudioRawFrame
])

Function Calling

The service supports function calling with automatic response handling:

# Define tools
tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get weather information",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string"}
            }
        }
    }
}]

# Configure service with tools
service = OpenAIRealtimeBetaLLMService(
    api_key="your-api-key",
    session_properties=SessionProperties(
        tools=tools,
        tool_choice="auto"
    )
)

# Register function handler
@service.function("get_weather")
async def handle_weather(location: str):
    # Implementation
    return {"temperature": 72, "condition": "sunny"}

Frame Flow

Metrics Support

The service collects comprehensive metrics:

  • Token usage (prompt and completion)
  • Processing duration
  • Time to First Byte (TTFB)
  • Audio processing metrics
  • Function call metrics

Advanced Features

Turn Detection

# Server-side VAD
turn_detection = TurnDetection(
    type="server_vad",
    threshold=0.5,
    prefix_padding_ms=300,
    silence_duration_ms=800
)

# Disable turn detection
turn_detection = False

Context Management

# Create context
context = OpenAIRealtimeLLMContext(
    messages=[],
    tools=[],
    system="You are a helpful assistant"
)

# Create aggregators
aggregators = service.create_context_aggregator(context)

Notes

  • Supports real-time speech-to-speech conversation
  • Handles interruptions and turn-taking
  • Manages WebSocket connection lifecycle
  • Provides function calling capabilities
  • Supports conversation context management
  • Includes comprehensive error handling
  • Manages audio streaming and processing
  • Handles both text and audio modalities